Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

نویسندگان

  • Jiayi Wen
  • Shenggao Zhou
  • Zhenli Xu
  • Bo Li
چکیده

Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution.

We observed monoclonal antibody mediated coalescence of negatively charged giant unilamellar phospholipid vesicles upon close approach of the vesicles. This feature is described, using a mean field density functional theory and Monte Carlo simulations, as that of two interacting flat electrical double layers. Antibodies are considered as spherical counterions of finite dimensions with two equal...

متن کامل

Scaling and universality in the counterion-condensation transition at charged cylinders.

Counterions at charged rodlike polymers exhibit a condensation transition at a critical temperature (or, equivalently, at a critical linear charge density for polymers), which dramatically influences various static and dynamic properties of charged polymer solutions. We address the critical and universal aspects of this transition for counterions at a single charged cylinder in two and three sp...

متن کامل

Counterions at charge-modulated substrates

– We consider counterions in the presence of a single planar surface with a spatially inhomogeneous charge distribution using Monte-Carlo simulations and strong-coupling theory. For high surface charges, multivalent counterions, or pronounced substrate charge modulation the counterions are laterally correlated with the surface charges and their density profile deviates strongly from the limit o...

متن کامل

Interactions between charged surfaces mediated by molecules with spatially distributed charges*

A short review of recent theoretical advances in studies of the interaction between highly charged systems is presented. Such a system could not be described by the mean field theory. More advanced methods have to be used in order to introduce the correlations between highly charged particles. In this work I focus on the system of highly charged surfaces, separated by a solution of molecules wi...

متن کامل

The density distributions of the counterions and the coions confined in two similarly charged plates.

By using the field-theoretic method, we established a unified systematic formulation of a model of counterions and coions confined in two similarly charged plates, and calculated the density distributions of counterions and coions with various coupling parameters by the two methods: Poisson-Boltzmann (PB) approach and the strong coupling (SC) theory, respectively. We also performed Monte Carlo ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012